Sains
Malaysiana 54(3)(2025): 769-783
http://doi.org/10.17576/jsm-2025-5403-13
Identification and In-Silico Analysis of a Cellulose Synthase-Like Gene on Eddoe Taro
(Pengenalpastian dan Analisis In-Silico Gen Selulosa Seperti Sintase pada Eddoe Taro)
DELVI MARETTA1,*,
IS HELIANTI2, DEVIT PURWOKO3, EDI SANTOSA4 & SOBIR4
1Research Center for Horticulture, National Research
and Innovation Agency, Republic of Indonesia (BRIN), Cibinong Science Center, Jl. Raya
Bogor KM 46 Cibinong, West Java 16915, Indonesia
2Research Center for Genetic Engineering, National
Research and Innovation Agency, Republic of
Indonesia (BRIN),
Cibinong Science Center, Jl. Raya Bogor KM 46 Cibinong, West
Java 16915, Indonesia
3Research Center
for Applied Botany, National
Research and Innovation Agency, Republic of
Indonesia (BRIN),
Cibinong Science Center, Jl. Raya Bogor KM 46 Cibinong, West
Java 16915, Indonesia
4Department Agronomy and Horticulture, Faculty of
Agriculture, Bogor Agricultural University, Jl Meranti Kampus IPB Darmaga,
Bogor, West Java 16680, Indonesia
Received: 14 May 2024/Accepted: 16 December 2024
Abstract
Glucomannan
is a non-starch carbohydrate predominantly found in tubers, serving as a
significant resource for food and health industries. Despite the widely
recognized glucomannan content in taro tubers, there is limited understanding
regarding the gene level. Therefore, this research aimed to identify putative
Cellulose Synthase-like A (CslA) gene sequences associated with
glucomannan biosynthesis in eddoe taro plant. Genome isolation was carried out
on six genotypes of eddoe taro, each showing different glucomannan content. A
pair of primers designed from the mannan synthase encoding gene sequences
obtained from the NCBI. Subsequently, sequences of the PCR product were
analyzed for identification and in-silico analysis. The result of in-silico RFLP analysis showed that six genotypes had polymorphic allelic fragments. The
DNA sequences showed a high similarity to CslA gene, among representative taro tubers compared to the reference plants. A
total of three nucleotide sequences fragments from the S7 and S34 genotypes as
well as two from S15, S28, S30, and S36, corresponded to CslA gene of Amorphophallus konjac. Phylogenetic analysis
based on nucleotide sequences showed that S7 and S34 had distinctive characteristics, indicating specific and wide
adaptation, respectively. Despite the presence of single nucleotide
polymorphism, the in-silico transcription-translation showed that the
protein constructed had a highly similar consensus motif. These results
suggested the identified sequences as a potential CslA-encoding gene
that had functioned in the biosynthesis of mannan synthase to produce
glucomannan in taro plants.
Keywords: Biosynthesis; CslA gene; glucomannan; sequences
polymorphism; taro breeding
Abstrak
Glukomanan ialah karbohidrat bukan-kanji dalam ubi dan digunakan secara meluas dalam
industri makanan dan kesihatan. Ubi keladi diketahui mengandungi glukomanan, namun
pengetahuan berkaitan perkara ini terutamanya di tahap gen masih sedikit.
Tujuan penyelidikan ini untuk mengenal pasti jujukan gen selulosa seperti
sintase A (CslA) yang mungkin memainkan peranan dalam biosintesis
glukomanan pada keladi jenis eddoe. Pengasingan genom telah dijalankan pada
enam genotip keladi eddoe yang mempunyai perbezaan yang ketara pada kandungan
glukomanan. Sepasang primer yang direka daripada urutan gen pengekodan manan sintase
yang diperoleh daripada bank gen NCBI. Jujukan produk PCR dianalisis untuk
pengenalpastian dan analisis in silico. Hasil analisis in silico RFLP
bagi jujukan menunjukkan bahawa enam genotip mempunyai serpihan alel
polimorfik. Analisis jujukan DNA menunjukkan persamaan yang tinggi dengan gen CslA,
antara keladi perwakilan berbanding dengan tumbuhan rujukan. Terdapat tiga
serpihan jujukan nukleotida daripada genotip S7 dan S34 dan dua serpihan
daripada S15, S28, S30 dan S36 yang sepadan dengan gen CslA Amorphophallus
konjac. Analisis filogenetik berdasarkan jujukan nukleotida menunjukkan
bahawa S7 dan S34 dipisahkan daripada genotip lain. Genotip S34 telah dikenal
pasti sebagai adaptasi sekitaran luas manakala S7 mempunyai adaptasi lokasi
khusus. Penjajaran menemui polimorfisme nukleotida tunggal tetapi terjemahan
transkripsi in silico mendedahkan penjajaran protein dengan motif
konsensus serupa yang tinggi. Ia dianggap bahawa jujukan yang ditemui ialah gen
pengekodan CslA yang berpotensi yang telah berfungsi dalam biosintesis manan
sintase untuk menghasilkan glukomanan dalam keladi.
Kata kunci: Biosintesis; gen CslA; glukomanan; pembiakan talas;
polimorfisme jujukan
REFERENCES
Alonso-Sande, M.,
Teijeiro-Osorio, D., Remuñán-López, C.
& Alonso, M.J. 2009. Glucomannan, a promising polysaccharide for
biopharmaceutical purposes. Journal of Pharmaceutics and Biopharmaceutics 72(2): 453-462. doi:10.1016/j.ejpb.2008.02.005
Aulia, N., Putri, C.K., Khairiyah, L., Khairunnisa, F.A. & Achyar, A.
2021. Analysis of genetic
variation of measles virus genotype and isolate M-F intergenic spacer sequences
PopSet: 2105287799 using Restriction Fragment Length Polymorphism (RFLP) in-silico. Prosiding Seminar Nasional Biologi 1(2): 1139-1146. https://semnas.biologi.fmipa.unp.ac.id/index.php/prosiding/article/view/298/224
Baucke, L., Miele, E. & Staiano, A. 2004. Fiber (glucomannan) is beneficial in the treatment of
childhood constipation. Pediatrics 113(3): e259-e264.
doi:10.1542/peds.113.3.e259
Birketvedt,
G.S., Shimshi, M., Erling, T. & Florholmen, J. 2005. Experiences with three
different fiber supplements in weight reduction. Medicinal Science
Monitoring 11(1): PI5-8.
Chairul, C.
& Chairul, S.M. 2006. Isolasi glukomanan dari dua jenis araceae: Talas (Colocasia
esculenta (L.) Schott) dan ıles-ıles (Amorphophallus
campanulatus Blumei). Berita Bio 8(3): 171-178.
Chauhan,
A., Modgil, M., Rajam, M.V.R., Sharma, J.N. & Siddappa, S. 2023. Isolation,
cloning and in-silico analysis of β-tubulin gene from apple leaf
blotch fungus Marssonina coronaria. Indian Phytopathology 76: 371-382.
https://doi.org/10.1007/s42360-023-00614-z
Gao, Y.,
Zhang, Y., Feng, C., Chu, H., Feng, C., Wang, H., Wu, L., Yin, S., Liu, C., Chen,
H., Li, Z., Zou, Z. & Tang, L. 2022. A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis. Computational
and Structural Biotechnology Journal 20: 1002-1011.
doi:10.1016/j.csbj.2022.02.009
Gao, Y., Yin,
S., Yang, H., Wu, L. & Yan, Y. 2017. Genetic diversity and phylogenetic
relationships of seven Amorphophallus species in southwestern China revealed by
chloroplast DNA sequences. Mitochondrial DNA Part A 29(5): 679-686.
doi:10.1080/24701394.2017.1350855
Gille, S.,
Cheng, K., Skinner, M.E., Liepman, A.H., Wilkerson, C.G. & Pauly, M. 2011.
Deep sequencing of voodoo lily (Amorphophallus konjac): An approach to
identify relevant genes involved in the synthesis of the hemicellulose
glucomannan. Planta 234(3): 515-526. doi:10.1007/s00425-011-1422-z
Goubet, F.,
Barton, C.J., Mortimer, J.C., Yu, X., Zhang, Z., Miles, G.P., Richens, J.,
Liepman, A.H., Seffen, K. & Dupree, P. 2009. Cell wall glucomannan in
Arabidopsis is synthesised by CSLA glycosyltransferases, and influences
the progression of embryogenesis. The Plant Journal 60(3): 527-538.
doi:10.1111/j.1365-313X.2009.03977.x
Hall, T.A. 1999.
BioEdit: A user-friendly biological sequence alignment editor and analysis
program for windows 95/98/NT. Nucleic Acids Symposium Series. pp. 95-98.
Hu, H., Liu, J.,
Wang, B., An, J. & Wang, Q. 2019. Characterization of the complete
chloroplast genome of Amorphophallus konjac (Araceae) and its
phylogenetic analysis. Mitochondrial DNA Part B 4(1): 1658-1659.
doi:10.1080/23802359.2019.1606683
Jo, J.,
Kang, M.Y., Kim, K.S., Youk, H.R., Shim, E.J., Kim, H., Park, J.S., Sim, S.C.,
Yu, B.C. & Jung, J.K. 2022. Genome‑wide analysis‑based single
nucleotidepolymorphism marker sets to identify diverse genotypes in cabbage
cultivars (Brassica oleracea var. capitata). Scientific Reports 12: 20030. https://doi.org/10.1038/s41598-022-24477-y
Karima,
R., Elya, B. & Sauriasari, R. 2023. Mechanism of action of glucomannan as a potential therapeutic agent for
type 2 diabetes mellitus. Tropical
Journal of Natural Product Research 7(12): 5460-5469. DOI
10.26538/tjnpr/v7i12.15
Keithley,
J. & Swanson, B. 2005. Glucomannan and obesity: A critical review. Alternative
Therapies in Health and Medicine 11(6): 30-34.
Kelley, L.A.
& Sternberg, M.J.E. 2009. Protein structure prediction on the web: A case
study using the Phyre server. Nature Protocols 4(3): 363-371.
Krieger, E.,
Koraimann, G. & Vriend, G. 2002. Increasing the precision of comparative
models with YASARA NOVA- A selfparameterizing force field. Proteins:
Structure, Function and Genetics 47(3): 393-402.
Liepman, A.H.,
Wilkerson, C.G. & Keegstra, K. 2005. Expression of cellulose synthase-like
(Csl) genes in insect cells reveals that CslA family members
encode mannan synthases. Proceedings of the National Academy of Sciences of
the United States of America 102(6): 2221-2226. doi:10.1073/pnas.0409179102
Liepman, A.H.,
Nairn, C.J., Willats, W.G.T., Sorensen, I., Roberts, A.W. & Keegstra, K.
2007. Functional genomic analysis supports conservation of function among
cellulose synthase-like a gene family members and suggests diverse roles of
mannans in plants. Plant Physiology 143(4): 1881-1893.
doi:10.1104/pp.106.093989
Mahendhiran, M.,
Ramirez, P.J.H., Escobedo, G., Medrano, R.M., Canto, C.B., Tzec-Simá, M.,
Grijalva, A.R. & James, K.A. 2014. Single nucleotide polymorphisms in
partial sequences of the gene encoding the large sub-units of ADP-glucose
pyrophosphorylase within a representative collection of 10 Musa genotypes. Electronic
Journal of Biotechnology 17(3): 137-147. doi:10.1016/j.ejbt.2014.04.004
Marchler-Bauer,
A., Zheng, C., Chitsaz, F., Derbyshire, M.K., Geer, L.Y., Geer, R.C., Gonzales,
N.R., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Lu, S., Marchler,
G.H., Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D. & Bryant, S.H.
2013. CDD: Conserved domains and protein three-dimensional structure. Nucleic
Acids Research 41(Database issue): D348-D352. https://doi.org/10.1093/nar/gks1243
Maretta, D., Sobir, Helianti, I., Ridwan, D., Purwono & Santosa, E.
2023. Glucomannan content
stability of Eddoe taro tuber based on parametric, non parametric, and AMMI
analysis. Sains Malaysiana 52(11): 3135-3145. http://doi.org/10.17576/jsm-2023-5211-09
Maretta, D., Sobir, Helianti, I., Purwono & Santosa, E. 2020. Genetic diversity in eddoe taro (Colocasia
esculenta var. Antiquorum) from Indonesia based on morphological and
nutritional characteristics. Biodiversitas 21(8): 3525-3533. https://doi.org/10.13057/biodiv/d210814
Mashudi,
S., Putri, D.R. & Hariyatmi, Aziz, Y.S. 2023. The impact of konjac
glucomannan in reducing blood glucose levels. Community Practitioner 20(10): 387-393. DOI: 10.5281/zenodo.10060277
Moreira, L.R.S.
& Filho, E.X.F. 2008. An overview of mannan structure and mannan degrading
enzyme systems. Applied Microbiology and Biotechnology 79: 165-178.
Suzuki, S., Li,
L., Sun, Y.H. & Chiang, V.L. 2006. The cellulose synthase gene superfamily
and biochemical functions of xylem-specific cellulose synthase-like genes in Populus
trichocarpa. Plant Physiology 142(3): 1233-1245.
doi:10.1104/pp.106.086678
Tasma, I.M.
2015. Utilization of genome sequencing technology to accelerate plant breeding
program. Jurnal Penelitian dan Pengembangan Pertanian 32(2): 159-168.
Theodore, G.S.
2000. Mitochondrial DNA and the peopling of the new world genetic variations
among native Americans provide further clues to who first populated the
Americas and when they arrived. American Scientist Online https://www.sas.upenn.edu/~tgschurr/pdf/Am%20Sci%20Article%202000.pdf
Thompson, J.D.,
Gibson, T.J. & Higgins, D.G. 2003. Multiple sequence alignment using
ClustalW and ClustalX. Current Protocols in Bioinformatics Chapter 2:Unit 2.3.
Wigoeno, Y.A.,
Azrianingsih, R. & Roosdiana, A. 2013. Analisis kadar glukomanan pada umbi
porang (Amorphophallus muelleri Blume) menggunakan refluks kondensor. Jurnal
Biotropika 1(5): 231-235.
Yadav, S.,
Yadava, Y.K., Kohli, D., Meena, S., Kalwan, G., Bharadwaj, C., Gaikwad, K.,
Arora, A. & Jain, P.K. 2022. Genome‑wide identification, in-silico characterization and expression analysis of the RNA helicase gene family in
chickpea (C. arietinum L.). Scientific Reports 12: 9778.
https://doi.org/10.1038/s41598-022-13823-9
Yang, D., Yuan,
Y., Wang, L., Wang, X., Mu, R., Pang, J., Xiao, J. & Zheng, Y. 2017. A
review on konjac glucomannan gels: Microstructure and application. International
Journal of Molecular Sciences 18(11): 2250. doi:10.3390/ijms18112250
Yeriska, F.,
Umar, M.Z., Hijriah, N.W., Fadhlurrohman, R. & Achyar, A. 2021. Analisis
variasi genetik sekuen gen pengkode protein spike virus MERS-CoV (PopSet:
1843801421) menggunakan RFLP secara in-silico. Prosiding Seminar
Nasional Biologi 1(2): 898-906. https://semnas.biologi.fmipa.unp.ac.id/index.php/prosiding/article/view/145?articlesBySameAuthorPage=3
Zalewski, B.M.,
Chmielewska, A. & Szajewska, H. 2015. The effect of glucomannan on body
weight in overweight or obese children and adults: A systematic review of
randomized controlled trials. Nutrition 31(3): 437-442. https://doi.org/10.1016/j.nut.2014.09.004
*Corresponding author; email: delvi.maretta@brin.go.id